Name

Solanum elaeagnifolium Cav. is commonly known in Australia as silverleaf nightshade. *Solanum* is from the Latin *solamen*, 'solace' or 'comfort', in reference to the narcotic effects of some *Solanum* species. The species name, *elaeagnifolium*, is Latin for ‘leaves like *Elaeagnus*’, in reference to olive-like shrubs in the family Elaeagnaceae. ‘Silverleaf’ refers to the silvery appearance of the leaves and ‘nightshade’ is derived from the Anglo-Saxon name for nightshades, ‘nihtscada’ (Parsons and Cuthbertson 1992). Other vernacular names are meloncillo del campo, tomatillo, white horsenettle, bullhettle, silver-leaf horsenettle, tomato weed, sand brier, trompillo, meloncillo, revienta caballo, silver-leaf nettle, purple nightshade, white-weed, western horsenettle, desert night-shade, silverleaf bitter apple and devilbush (Boyd et al. 1984). In South Africa the plant is known by the Afrikaans name ‘Satan’s bush’, in testimony to its infamy (Wassermann et al. 1988), and in Morocco it is known as morelle jaune (Bouhache, Boulet and El Karakhi 1993).

Description

The following description is from Symon (1981).

‘An erect, clonal, herbaceous perennial to 1 m, often 40–60 cm high, extensive underground root system producing usually annual vegetative growth; stems erect, branching towards top; prickles 2–5 mm long, straight, fine, often reddish, usually present on stems, less often on petioles and leaves, plants sometimes nearly free of prickles; all parts covered with close, dense, tomentum of stellate hairs (sessile or shortly multiseriate-stalked, porrect-stellate with medium or long central ray), general aspect silvery-green, rarely rusty, slightly discolourous. Lower leaves c. 10 × 4 cm, oblong-lanceolate, distinctly sinuate-undulate, upper leaves smaller, oblong, entire, venation usually prominent in dried specimens, base rounded or cuneate, apex acute or obtuse; petiole 0.5–2 cm long, with or without prickles. Inflorescence a few (1–4)-flowered raceme at first terminal, soon lateral; peduncle 0.5–1 cm long; floral rachis 2–3 cm long; pedicels 1 cm long at anthesis, reflexed and lengthened to 2–3 cm long in fruit. Calyx c. 1 cm long at anthesis; tube 5 mm long, more or less 5-ribbed by nerves of 5 subulate lobes, whole enlarging in fruit. Corolla 2–3 cm diameter, rotate-stellate, often reflexed, blue, rarely pale blue, white, deep purple, or pinkish. Anthers 5–8 mm long, slender, tapered towards apex, yellow, conspicuous, erect, not coherent; filaments 3–4 mm long. Ovary pubescent towards summit; style 10–15 mm long. Fruit 8–14 mm diameter, globular, first marbled green, later greenish-yellow to orange brown, usually firm, not succulent. Seeds 3 × 2 mm diameter, flat or biconvex, light brown, smooth’.

The chromosome number in Australian material examined by Randell and Symon (1976) was *n* = 12. A flowering and fruiting stem is shown in Figures 1 and 2.

There is morphological variability within Australian populations for degree of spininess, growth habit, petal colour and leaf shape, size and lobing, but the variation is considered to be within the range of the species. The variability is probably the result of multiple introductions, rather than hybridization with related indigenous species (Tideman 1960a, Leys and Cuthbertson 1977). The large genetic diversity observed in South Australian populations (Hawker et al. 2006) suggests multiple importations.

Silverleaf nightshade is sometimes confused with two native *Solanum* species in Australia, native quena (*S. esuriale* Lindl.) and western nightshade (*S. coactiliferum* J.M.Black). Silverleaf nightshade has a taller, more robust habit,
Figure 1. Flowering and fruiting stem of *Solanum elaeagnifolium*.

Figure 2. Flowering shoots of *Solanum elaeagnifolium* growing from perennial rootstock in cereal stubble.
and longer leaves (10 cm cf. 5 cm) than *S. esuriare*, with more wavy margins (Cuthbertson *et al.*1976, McKenzie 1976a). *S. coactiliferum* grows in sandy soils as a relic of native vegetation and is not normally an aggressive weed (D.E. Symon personal communication). *S. karsensis* (Symon), a native perennial that infests irrigated crops in far western New South Wales, is also similar in appearance and behaviour to silverleaf nightshade (Monaghan and Brownlee 1981).

History

Silverleaf nightshade was first reported in Australia at Bingara (New South Wales) in 1901, but the route of introduction is not known. Rapid subsequent records at Tenterfield (1907), North Melbourne (1909), Singleton (1914), Hopetoun (1918) and Cowra (1923), strongly suggest that multiple introductions occurred (Cuthbertson *et al.* 1976).

The weed was first recorded in South Australia in 1914 (Kloot 1986), possibly in contaminated hay from the USA (Parsons and Cuthbertson 1992), and was recognized as a potentially serious weed by the late 1940s. Unofficial reports suggest that it has been present in the mid-northern areas of South Australia since 1937. By 1958 it had been recorded from Lameroo, Keith, Owen, Clare, Hilltown, Rhyne, Cleve, Roseworthy, Reynella and in the Upper Murray Irrigation Area. All infestations were thought to be *S. esuriare* until 1958, when it was realized that silverleaf nightshade was also present. The common name ‘tomato weed’ was used to distinguish silverleaf nightshade from native *Solanum* species, commonly known as ‘wild tomatoes’, because farmers were reluctant to change to the name ‘silverleaf nightshade’ (Tideman 1960a,b). Sometime later the name ‘silverleaf nightshade’ was adopted as the official common name for the species in South Australia. By 1978, South Australia had about 16 000 ha (J. Dickenson personal communication) and by 1990 the area exceeded 40 000 ha (South Australian Animal and Plant Control Commission survey, unpublished).

Silverleaf nightshade spread from the Americas to many places, including Australia, Argentina, Brazil, Chile, India, Israel, Greece, Morocco, North America, South Africa and Spain. It has become a major weed problem in Australia, Argentina, Greece, India, Morocco, North America and South Africa (Carretero 1989, Holm *et al.* 1991, Parsons and Cuthbertson 1992, Eleftherohorinos *et al.* 1993). There are 1.4 million ha of land infested with silverleaf nightshade in the southern high plains of Texas alone, including 800 000 ha of cotton (Abernathy and Keeling 1979, Keeling and Abernathy 1985). Over 100 000 ha of irrigated cotton, maize and sesame are infested in central Morocco (Tanji *et al.* 1984). Silverleaf nightshade was first found in South Africa as early as 1905 as a contaminant of seed, but was only officially recorded in 1952 and was declared a noxious weed in 1966. It is now a major weed and infests up to 55% of land in some districts, occurring mainly in the

Distribution

Wapshere (1988) concluded that there is strong evidence that silverleaf nightshade evolved in the Monterrey region in north-eastern Mexico, based on an assessment of the variation, distribution and frequency of its naturally occurring herbivores. Boyd *et al.* (1984) agree that silverleaf nightshade is native to the Americas, but believe that it could be indigenous to either North or South America. They do, however, concede that the likely centre of origin is in south-western United States and northern Mexico. Many of the regions of the world where silverleaf nightshade has established have similar climates to this putative area of origin.

Silverleaf nightshade spread from the Americas to many places, including Australia, Argentina, Brazil, Chile, India, Israel, Greece, Morocco, North America, South Africa and Spain. It has become a major weed problem in Australia, Argentina, Greece, India, Morocco, North America and South Africa (Carretero 1989, Holm *et al.* 1991, Parsons and Cuthbertson 1992, Eleftherohorinos *et al.* 1993). There are 1.4 million ha of land infested with silverleaf nightshade in the southern high plains of Texas alone, including 800 000 ha of cotton (Abernathy and Keeling 1979, Keeling and Abernathy 1985). Over 100 000 ha of irrigated cotton, maize and sesame are infested in central Morocco (Tanji *et al.* 1984). Silverleaf nightshade was first found in South Africa as early as 1905 as a contaminant of seed, but was only officially recorded in 1952 and was declared a noxious weed in 1966. It is now a major weed and infests up to 55% of land in some districts, occurring mainly in the
Northern and Northwest provinces, Free State and the Karoo region of the Eastern Cape (Ock-ers and Zimmermann 1991, Wassermann et al. 1988). It is widespread on the semi-arid pampas of South America, but not where crops and pastures provide adequate competition (McKenzie 1980). Potential for invasion of New Zealand is low and a marginally suitable homoclimatic area exists only around the Hawkes Bay region (Panetta and Mitchell 1991).

Silverleaf nightshade occurs in the Australian states of Queensland, New South Wales, Victoria, South Australia and Western Australia. It is a serious weed in South Australia, New South Wales and Victoria, with large infestations occurring throughout the cereal cropping zones. Isolated infestations occur in Queensland and Western Australia (Figure 3). It infests large areas of the southern and central wheat zone, the northwestern slopes, and the Murrumbidgee Irrigation Area of New South Wales (Lemerle 1983), with an estimated 140 000 ha affected in 1992, a seven-fold increase since 1977 (Dellow 1993, Hennessy 1995). Infestations occur throughout the Wimmera and Mallee regions in the west and north of Victoria. The worst-affected areas are around Mildura, Hopetoun, Horsham and Pyramid Hill (Anon. 1980). In South Australia, silverleaf nightshade occurs throughout the cereal cropping zones and is causing most concern in parts of the Upper South East, Mallee, Lower and Mid-North, and Eastern Eyre Peninsula regions. It was first found in 1950 in Western Australia and is established at more than 50 sites in a band running from Perth south-east to Albany. Risk assessment shows that it is established only over a small section of its potential high and medium risk distribution areas (Connell and Panetta 1993).

Habitat

Silverleaf nightshade is adapted to a wide range of habitats, a characteristic that contributes to its weediness in diverse regions around the world. It grows in the warm, temperate regions of Australia with an annual rainfall of 250–600 mm, and grows in a range of soil textures (Parsons and Cuthbertson 1992), although the heaviest infestations occur on sandy soils with low organic matter (Leys and Cuthbertson 1977). For example, in the Wimmera and northern regions of Victoria it grows on heavy clays but is most abundant on the light-textured soils of the Mallee. The largest infestations are on cropping and grazing land, with smaller infestations being found in irrigated pastures, orchards and vineyards, roadsides, channel banks and stockyards (McKenzie 1980). In a study of the potential invasiveness of silverleaf nightshade in New Zealand, Panetta and Mitchell (1991) identified cool summers and high annual rainfall as important factors which may limit its distribution in some regions of Australia which have not been colonized. Although it grows alongside waterways and seeds spread via running water, silverleaf nightshade appears to be susceptible to water-logging. An exceptionally wet winter apparently killed a 2 ha infestation on a heavy clay soil in south-eastern Australia (D.E. Symon unpublished report). It is sensitive to frost and highly resistant to drought (Wassermann et al. 1988).
Silverleaf nightshade grows well on disturbed land such as cultivated fields, roadsides, water furrows and riverbanks, and stock yards in South Africa. It does not normally invade undisturbed pastures, although this has been observed in several districts (Wassermann et al. 1988). It invades sandy soils with poor fertility and sparse ground cover in Argentina (Amor 1977), and in the high plains of Texas it has increased in the cropping areas as a result of reduced tillage (Stubblefield and Sosebee 1984).

Growth and development

Silverleaf nightshade is a shrub-like, multi-stemmed plant that grows in summer and autumn. It has a deep, extensive perennial root system (Figure 4). New shoots develop from adventitious buds on the roots and are killed by frosts during late autumn or early winter. Shoots emerge from perennial roots in October to November (spring) in Australia and flowering commences in December and continues through to February or March (summer). The first fruits normally form in January and berries ripen and seeds mature (Figure 5) about 4–8 weeks after fruit set (McKenzie 1980). Soil temperature may influence shoot emergence, because shoot emergence was delayed by an exceptionally cool spring in South Australia in 1975 (J. Dickenson personal communication). New shoots have been observed as late as early May (autumn), after cultivation (Leys and Cuthbertson 1977).

The deep, perennial root system confers drought-resistance (Wassermann et al. 1988) and resists most control strategies. Roots have been measured to a depth of 4 m in Australia (D. Creeper personal communication) while in Arizona they extended beyond 3.3 m, ‘virtually undiminished’ in diameter. Some 45% of roots were in the top 30 cm, and 70% occurred in the top 90 cm (Davis et al. 1945). The root system of silverleaf nightshade consists of three main parts: the main or vertical tap root, the portion of the shoot extending from the main tap root to the soil surface, and the lateral structure that connects adjacent shoots. There are three distinct types of tissue specialization in the main tap root: epidermis, cortex, and vascular region. Lateral roots are similar in structure to tap roots, but contain more fibre cells. The structure of the laterals suggests that they are creeping roots, rather than rhizomes (Tisdell et al. 1961). Roots increase in diameter through cambial activity and secondary thickening and some branching occurs at depth. Secondary shoots tend to lack secondary
thickening and grow up to 2 m horizontally before turning downwards (Cuthbertson 1976).

Total non-structural carbohydrate (TNC) levels are an indication of stored energy reserves and plants are thought to be less able to survive herbicide damage when TNC levels are low. TNC levels were highest in the roots and lower shoot stem. Levels were lowest at flower bud formation and then built up between flowering and fruit maturation, and appeared to be determined by phenological stage rather than soil moisture or humidity (Bouhache, Boulet and El Karakhi 1993). In Texas, an increase in TNC was measured in the storage organs of the roots of silverleaf nightshade during late summer and early autumn, coinciding with the green berry stage. TNC levels were highest at full maturity and early senescence, and decreased slightly after senescence, probably as a result of maintenance respiration (Stubblefield and Sosebee 1985).

Reproduction

Floral biology

Flowers first appear in late December to early January, about three weeks after shoot emergence (Moore et al. 1975). Flowering and fruiting continue through summer and autumn while conditions are suitable (Cuthbertson et al. 1976). Flowers are usually bright purple to blue. In most infestations there are subtle differences in flower colour associated with coalescing colonies. Occasionally, white-flowered colonies are found and their occurrence as solid patches amongst predominantly purple-flowering colonies re-enforces the relative importance of clonal spread in comparison to spread by seeds. Populations with white flowers do not contain the floral pigments delphinidin or petunidin due to lack of either flavanone 3-hydroxylase or flavonoid 3,5-hydroxylase (Moore and Cook 1998). Symon (1981) noted that native Australian Solanum species with conspicuous yellow anthers are probably adapted for recognition by pollinating insects. Silverleaf nightshade has conspicuous yellow anthers, and so is likely to be cross pollinated, although there was no literature found describing its breeding system.

Seed production and dispersal

Each stem produces about 60 berries per season in Australia, with each berry containing about 50 seeds (Cuthbertson et al. 1976). Berries ripen and contain mature seeds about 4–8 weeks after fruit set (Moore et al. 1975). There were 24–149 seeds per berry in the USA, depending on sowing date (Boyd and Murray 1982). Cooley and Smith (1972) estimated population densities to range between 7000 and 40 000 plants acre\(^{-1}\), with subsequent seed production ranging between 1200 and 25 000 seeds m\(^{-2}\). Viable soil seed banks in heavily infested areas in Morocco were 163 m\(^{-2}\) to a depth of 60 cm (Bouhache and Tanji 1985). There were 4000 seeds m\(^{-2}\) in the top 10 cm of soil in a dense infestation in north-western Victoria (McKenzie 1980). High dormancy and infrequent germination probably explains why seed bank levels have built up to these levels in dense populations (Wapshere 1988).

Seeds can be dispersed by water, birds and other animals, vehicles and machinery (McKenzie 1980, Heap and Honan 1993), as well as infested fodder and seed (Cuthbertson et al. 1976). Dry berries can spread rapidly over long distances in streams in South Africa (Wassermann et al. 1988) and there is strong evidence that this also occurs in Australia. Mature shoots can tumble across the ground when blown by wind, thus spreading berries (Parsons 1973). Boyd et al. (1984) observed that the meagre literature on the spread of silverleaf nightshade indicates that it does not spread as rapidly as some species but, once established, it is tenacious.

Seeds can be spread in the faeces of a variety of animals, including cattle, sheep and guinea fowl (Wassermann et al. 1988). Sheep readily eat berries in Australia and they appear to be the main vectors. In field studies with sheep in South Australia, excretion began within 24 hours of ingestion and most seeds were excreted within 7–9 days. There were up to 672 seeds kg\(^{-1}\) of fresh dung. Single seeds were detected 17 and 31 days after ingestion. Mature berries (on stalks and on the ground) as well as green berries were eaten to exhaustion between January and April (mid-summer to mid-autumn) when alternative feed supplies were low. Much of the excreted seed is viable (Heap and Honan 1993). In another laboratory feeding study with sheep, most seed had been passed by animals by the end of four
days, but one seed was detected after six days. Between 8 and 14\% of seed was excreted and a quarantine period of at least four days was suggested (McKenzie 1975). Wassermann et al. (1988) suggest a quarantine period of at least 10 days, while the work of Heap and Honan (1993) suggests that 14 days is more appropriate.

Seed viability and germination

Factors controlling germination and seedling establishment of silverleaf nightshade are poorly understood. Seeds are highly viable and are long-lived. However, only occasionally are high numbers of seedlings observed, suggesting specific moisture and temperature requirements for germination. Ingestion and excretion of seed by sheep increases germination (Parsons and Cuthbertson 1992). Most seedlings germinate after heavy summer thunderstorms, and survival depends on continued soil moisture during summer in Victoria (Molnar and McKenzie 1976). Following 75 mm of rain in the Mallee in 1973, seedlings were abundant, but few survived to the next growing season (McKenzie 1980). Germination occurs readily in October, when the soil temperature at 30 mm ranges from 10 to 23°C (Leys and Cuthbertson 1977). Seeds harvested at 30, 60, 90 and 360 days after anthesis gave 14.5, 20, 20, and 60.5\% germination respectively (Vigna et al. 1983). Under favourable conditions, up to 80\% of seeds can germinate. In laboratory storage studies in the USA, fresh seed had a germination rate of 29\%, 3-year-old seed 72\%, and 10-year-old seed 60\%. The most favourable conditions for germination are thought to be relatively high temperatures and an abundance of moisture. Seedlings are rarely observed in the Australian Mallee due to dry summers (McKenzie 1980).

Seeds of silverleaf nightshade have a strict germination requirement for alternating temperature (McKenzie and Douglas 1974, Boyd and Murray 1982, Trione and Cony 1990). Optimum conditions for germination in Oklahoma were 20/30°C for 16 h dark/8 h light, producing 57\% (Boyd and Murray 1982) and 48\% germination (Cooley and Smith 1972). Seeds will germinate equally in light or dark (McKenzie and Douglas 1974, Boyd and Murray 1982, Vigna et al. 1983, Trione and Cony 1990). Trione and Cony (1990) found that seeds became sensitive to alternating temperatures five days after the start of imbibition and three cycles of alternation were required for 50\% germination. The response to the germinating signal was retained through a dehydration cycle or subsequent incubation at constant temperatures. Germinating seeds were able to withstand periods of extreme temperature and dehydration for several days, and seeds could germinate when immersed in water. Immature seeds broke dormancy under dry storage at room temperature.

Germination was increased significantly by immersion of seeds in running or still water for 1–120 h prior to incubation at 20–30°C. Running water increased the rate of emergence but did not affect final germination at 50 days, compared with still water. It was suggested that the mucilaginous substance around the seed inhibited germination, either as a physical barrier, or through inhibitory chemicals (Rutherford 1978). Vigna et al. (1983) found that washing in stirred water for 36 h did not alter germination but alternate wetting and drying of seeds in soil accelerated germination. Germination can be increased 50\% by treatment for 15 minutes in concentrated hydrochloric acid (Amor 1977). Cooley and Smith (1972) found that mechanical or chemical seed coat treatments did not increase germination. Although experimental results are varied, it seems likely that there is a water soluble substance on seed coats that chemically or physically inhibits germination. Optimum pH for germination was between 6 and 7 and NaCl concentrations in excess of 2500 ppm significantly reduced germination (Boyd and Murray 1982).

Seedling establishment

Seeds of silverleaf nightshade often germinate after heavy rains in early autumn or spring, with alternating cool and warm temperatures. Emergence occurs more in disturbed soils than on crusted, compacted or undisturbed soil (Cuthbertson et al. 1976). Maximum emergence in a glasshouse (33\%) was from 30 mm (Cooley and Smith 1972) and few seedlings emerged from below 60 mm (Boyd and Murray 1982). Seedlings clipped at the cotyledon stage are capable of regeneration (Cooley and Smith 1972). Some seedlings are able to regenerate following shoot removal 15 days after emergence; after 30 days 90\% recovered from shoot removal (Boyd and Murray 1982). Seedling roots were 190 mm
long three weeks after germination (McKenzie 1976a). A newly emerged and a 5-week-old seedling are shown in Figures 6 and 7 respectively.

Wapshere (1988) postulated that although dispersal and initial establishment must occur by seed, the infrequent emergence and subsequent low survival of seedlings suggest that seeds play a minor role in shoot recruitment in established stands. Circumstantial evidence in southern Australia suggests that seedlings that emerge in late spring or summer rarely survive, due to infrequent rains, despite a potential for root elongation of 1 cm day$^{-1}$ (McKenzie 1980). Spread by seeds is thought to be restricted by drought in South Africa (Wassermann et al. 1988). Seedlings that emerge in autumn are probably killed by frost. In regions with significant warm season rainfall, such as in its native range, seedlings are sustained by late spring and summer rainfall and are not normally subjected to frost (Wapshere 1988).

Vegetative reproduction

Silverleaf nightshade has a long, robust tap-root that grows to 2 m. Robust lateral roots branch off from the main tap-root 15–30 cm below the surface (Figure 4). All parts of the root system can regenerate if cut off or damaged by cultivation, thereby aiding spread (Cuthbertson et al. 1976). The average root depth in the Victorian Mallee was 1.2 m and the deepest measured root was 2.8 m. Plants had an average of five lateral roots which typically arose in the top 60 cm of soil. The laterals were up to 2 m long and sometimes gave rise to daughter shoots. The deepest laterals arose from 143 cm down the vertical root and the shallowest was found at 1 cm (McKenzie 1980, Molnar 1982). Regenerating crowns and lateral roots were observed to arise from as deep as 50 cm in cultivated soils,
compared with 1–20 cm for uncultivated soils (Monaghan and Brownlee 1979). Dittmer (1959) excavated root systems in the New Mexico desert and found deep tap roots which gave rise to up to 32 laterals and daughter shoots 40–60 cm from the parent plant. The laterals bearing daughter shoots were 10–16 cm beneath the surface. The older roots were dark brown and only the largest laterals gave rise to tertiary roots. Hairs were abundant on all secondary and tertiary roots and averaged 120 µm long and 8 µm in diameter.

Although most farmers interviewed in southern Australia believed that the spread of silverleaf nightshade within farms was by stock, not cultivation (Tideman 1973), it is clear that vegetative reproduction contributes to spread. This spread is primarily through root growth at the margins of colonies, rather than transport of fragments during cultivation. Large patches of recognizable forms, sometimes isolated, and sometimes interspersed with other forms, indicate extensive spread by root growth in Australia (D.E. Symon unpublished report). In one corner of a paddock in South Australia, at least five distinct forms were present (J.W. Heap unpublished data). Grazed colonies increased in diameter by an average of 70 cm per year over three years and the rate of expansion varied greatly with season. In one wet year, colony diameter increased by 3.9 m and in a dry year it decreased by up to 2 m (McKenzie 1980).

When topsoil was removed and replaced by clean soil, regrowth from root systems reached the surface after four months from 50 cm, and after 14 months from 1.25 m. Shoots arising after cultivation were surveyed and 85% had arisen from vertical tap roots, while 15% had arisen from horizontal lateral roots. Of the vertical roots surveyed, 25% had produced more than one new shoot. Ten days after cultivation, the average shoot length was 8 cm (McKenzie 1980). Only 3% of shoots examined in a cultivated fallow in April had arisen from transplanted root fragments (Leys and Cuthbertson 1977).

Root fragments as short as 10 mm were able to regenerate and the depth of origin had no effect on regenerative capacity. Polarity was strongly maintained in excised fragments, with fewer shoots forming on fragments from horizontal roots than from vertical roots (Richardson and McKenzie 1981). Fernandez and Brevedan (1972) found that root fragments regenerated more in light than dark, and that chlorophyll sometimes developed in root fragments incubated in light. Some root fragments survived for 15 months with a capacity for regeneration. Root fragments were strongly polarized so that roots developed on the distal end and shoots on the proximal end. This polarity was lost in some fragments after prolonged storage. Root fragments from at least 1.25 m deep were able to regenerate, with depth of origin having little influence on regeneration. Regeneration from fragments was highest during winter and lowest during summer (Fernandez and Brevedan 1972). In pots, 10 cm long root cuttings failed to grow when planted at 20 cm depth (Babu et al. 1995).

Little is recorded on the life-span of individual plants, although it is clear from field observations that individual tap roots produce shoots for at least several years. Tap roots remain alive and new shoots are produced each year in late spring. Shoots are killed by the first frosts of autumn and the dead shoots stand through winter with mature berries on them (Cuthbertson et al. 1976).

Importance

Detrimental General. Silverleaf nightshade competes with crops, exudes plant inhibitors, interferes with animal husbandry and harvesting practices, and is an alternative host for phytophagous insects and plant diseases (Boyd et al. 1984), but there is little published information on its economic impact. It can reduce management options, such as the use of land and sale of hay (McKenzie 1980). In the 1970s, landowner concern about further spread in Victoria was very strong (McKenzie 1976b), and the greatest economic effect of silverleaf nightshade in eastern Australia was the reduction of land values of both infested and nearby properties (McKenzie 1980, Moore et al. 1975). Based on the experience in North America, the weed has the potential to spread to and have a major impact on the summer cropping areas of Australia, especially in the cotton production areas of northern New South Wales and southern Queensland (G.W. Charles personal communication 1997). A low rate of dispersal in the absence of livestock may be the reason that it is not yet a major problem in these areas.
Crops. Silverleaf nightshade competes for water and nutrients in dryland and irrigated crops and soil moisture losses have been measured at depths of up to 150 cm (Green et al. 1988). It competes indirectly with winter crops and pastures through moisture and nutrient depletion during the summer fallow period (Cuthbertson et al. 1976). For example, irrigated and dryland cotton lint yields in Oklahoma were reduced an average 1.5% for each silverleaf nightshade plant per 10 m length of row (Green et al. 1987). Yields of dryland crops are reduced over most of its range and competition appears to be most severe in sandy soils and seasons with low rainfall. The greatest unrealized threat to Australian agriculture is widespread invasion of summer-irrigated land (Leys and Cuthbertson 1977). Some farms in western USA have been abandoned due to silverleaf nightshade (Parsons 1973) and on the Eyre Peninsula in South Australia some farmers have discontinued cereal cropping in certain sandy paddocks owing to the competitive effects of this weed (R. Carter unpublished data). It is restricted to being a minor weed in Argentina by intensive cropping (wheat-sorghum-wheat rotation), and the competitiveness of Eragrostis curvula (Schrad.) Nees in sown pastures (Amor 1977).

To obtain the same cereal yield as in uninfested crops, extra expenditure on herbicides, cultivation and fertilizers is necessary. In some seasons when berry growth is early and cereal harvest is delayed, there is potential for grain contamination with mature fruits (McKenzie 1980). Yield experiments at 11 sites on the Eyre Peninsula, South Australia, and in New South Wales in 1977 measured cereal yield reductions of 4–77% (mean 41%), with the largest loss occurring in low rainfall, sandy sites (J. Dickenson personal communication). Estimated maximum yield reductions in cereals in South Australia at five sites in 1990 ranged from 0 to 55%. Yield reductions were also highest from dry sandy sites with low rainfall (J. Heap, unpublished data). Research in Victoria suggests that wheat yield can be reduced by up to 50% when crops are infested by silverleaf nightshade, but this varies greatly with seasonal conditions and weed density (McKenzie 1980). Wheat yields at eight sites in the Victorian Mallee were measured over three years in areas with shoot densities between 1.5 and 17.1 plants m\(^{-2}\). Yield reductions ranged from 11 to 43%, with an average of 36% (Molnar 1982). A moderate infestation of nine plants m\(^{-2}\) in New South Wales reduced grain yield by 12%. Yield losses were most pronounced in low rainfall years when crops relied more heavily on sub-soil moisture (Cuthbertson et al. 1976). When silverleaf nightshade was controlled with 2,4-D or glyphosate in New South Wales prior to sowing wheat, yield increases ranged from nil to 69% on a clay-loam soil. The largest increases were recorded in a drought year when moisture limited yield (Lemerle and Leys 1991).

Increased reliance upon herbicides and reduced tillage has resulted in silverleaf nightshade increasing in significance as a weed in cotton crops in south-western America. Estimated yield losses of 0.31–0.35% (Smith et al. 1990) to 1.54% (Green et al. 1987) occur for every stem per 10 m of crop row. Irrigated cotton crops appear to be less affected than dryland cotton crops, suggesting that competition for moisture is a significant factor influencing crop yields in infested fields (Green et al. 1988).

Gmira et al. (1998) reported that silverleaf nightshade infestations reduce crop yield by up to 40% and land values by up to 25% on the Moroccan Tadla Plains. Aside from direct competition with crops and pastures, silverleaf nightshade also can be a host for pathogens such as leaf spot (Cercospora atromarginalis G.F.Atk.) and root rot (Rhizoctonia solani J.G.Kühn) (Boyd et al. 1984) and insect pests of solanaceous crops (Anon. 1999).

Saponins in the fruits of silverleaf nightshade exert allelopathic effects on cucumbers in Greece (Eleftherohorinos et al. 1993), raising the possibility of allelopathic affects on other crops. Bothma (2002) demonstrated that extracts from silverleaf nightshade foliage have an inhibitory effect upon cotton and lettuce seedlings. It is speculated that the stellate trichomes connecting to the vascular bundles in the leaf may assist in the excretion of toxic alkaloids.

Pastures. Silverleaf nightshade competes directly with summer-growing pastures such as lucerne, and occasionally dense infestations restrict access to pasture underneath dense canopies. There is also evidence that annual winter pastures are affected by delayed autumn emergence and lower production, leading to reduced carrying capacity (Cuthbertson et al. 1976, McKenzie 1980). There
is potential to contaminate lucerne hay, and Tide-
man (1960b) reports that silverleaf nightshade
does not seem to be restricted by pastures con-
taining perennials such as phalaris or lucerne. As
with many plants, the weed status of silverleaf
nightshade as a component of grazed pastures
varies. Some graziers in South Africa, who do
not crop, consider it to be a valuable pasture spe-
cies, grazed by cattle and game with no apparent
detrimental effects, and it has been pelleted and
successfully fed to animals. The crude protein
of the shoots is 12.3%, compared with about
20% for lucerne (Wassermann et al. 1988). It
is, however, more commonly recognized as a
weed of pastures due to its poisonous effects
on grazing animals. In Texas, it poisoned sheep
and other livestock (Stubblefield and Sosebee
1984, 1985) and its berries have also been im-
plied in the poisoning of livestock (Boyd et al.
1984). Glycoalkaloids produced by silver-
leaf nightshade may be hydrolyzed in the gut to
form nerve toxins such as alkaloids or alkamines
(Boyd et al. 1984). Cattle that consume 0.1–0.3%
of their body weight in ripe berries display mod-
erate poisoning symptoms, which may include:
breathing difficulties, mucus discharge from the
mouth and nose, diarrhoea, weakness, trembling
and anaemia (Buck et al. 1960). Sheep are more
resistant to the toxins and goats are unaffected
(Boyd et al. 1984).

Toxicity to horses has been observed in Argent-
tina (McKenzie 1980). Following an apparently
clear case of sheep deaths caused by silverleaf
nightshade in Victoria, feeding trials with 2,4-D
treated and untreated stems, fruits and leaves
failed to produce poisoning (Molnar 1982).

Silverleaf nightshade density declines to a
very much lower level three or more years af-
after a cropping paddock is returned to grazing
(Wapshere 1988). Accounts of palatability are
varied and somewhat contradictory. Silverleaf
nightshade is less palatable after flowering, but
this may be overcome by mowing the plants so
that they wilt. Sheep will readily eat foliage and
berries when pasture reserves are low (McKen-
ze 1980). Silverleaf nightshade is reported to
be unpalatable and generally avoided by stock
in Victoria and southern New South Wales, al-
though the fruits are apparently attractive to gra-
zing sheep, which have also been observed graz-
ing buds and flowers. Overall, cattle probably
graze it more readily than sheep (D.E. Symon
unpublished 1975). One farmer reported that
sheep preferentially grazed some biotypes (Tide-
man 1973). Livestock do not eat it in Arizona and
contamination in hay discourages consumption
(Davis et al. 1945).

Beneficial

Although its significance is overwhelmingly as
a weed, several potentially beneficial attributes
have been identified for silverleaf nightshade.

Silverleaf nightshade contains the glycoal-
kaloid solasodine, which is a precursor in the
process in the manufacture of pharmaceuticals
such as corticosteroids (Heap and Carter 1999).
The use of silverleaf nightshade as a potential
pharma crop for the production of solasodine has
been investigated in Argentina and India (Kaul
nightshade is considered to be the most prom-
ising source of the 28 Solanum species studied
due to its 3.2% dry weight solasodine yield and
few thorns (Maiti and Mathew 1967). Sathiya-
moorthy et al. (1999) reported that silverleaf
nightshade extracts exhibit strong cytotoxicity
effects against cultured melanoma cell lines,
suggesting potential production of anti-cancer
drugs.

Extracts from silverleaf nightshade are also
being investigated for pesticidal properties. Gly-
coalkaloid extracts from silverleaf nightshade
berries exhibit molluscidal activity against Bulinus truncates (Müller) (Bekkouche et al.
2000) and larvicidal activity against Anopheles
labranchiae (Falleroni) mosquito larvae (Mark-
ouk et al. 2000).

Tiemann et al. (2002) identified possible
use of silverleaf nightshade for bioremediation
through its ability to bind heavy metals through
adsorption via carboxyl ligands.

Legislation

Silverleaf nightshade is listed as a noxious weed
across most of New South Wales (Kidston et al.
2006), Victoria (Smith and Faithfull 1998) and
South Australia (Agnew 2005).

Within New South Wales, silverleaf night-
shade is declared as a Class 3 in the north-eastern
parts of the state and a Class 4 noxious weed in
the central and southern parts of the state, as de-
scribed under the Noxious Weeds Act 1993. The
Act states that Class 3 noxious weeds are those plants that pose a serious threat to primary production or the environment of an area to which the order applies, are not widely distributed in the area and are likely to spread in the area or to another area. The Act requires that plants are fully and continuously suppressed and destroyed.

Class 4 noxious weeds are those plants that pose a threat to primary production, the environment or human health, are widely distributed in an area to which the order applies and are likely to spread in the area or to another area. The growth and spread of these plants must be controlled according to the measures specified in a management plan published by the Local Control Authority.

Silverleaf nightshade is declared as a Regionally Prohibited Weed in the Victorian Mallee, Wimmera, Port Phillip East, Goulburn and North East Catchment and Land Protection (CaLP) Regions, and a Regionally Controlled Weed in the North Central CaLP Region. Noxious weeds are declared under the Catchment and Land Protection Act 1994, which states that Regionally Prohibited Weeds are not widespread and must be fully destroyed or controlled. Regionally Controlled Weeds are generally more widespread and land managers must prevent spread of the plant.

Within South Australia, silverleaf nightshade is declared as a notifiable weed throughout the state under the Natural Resources Management Act 2004.

In Western Australia, it must be eradicated except in one shire, Narrogin, where it must be treated on roadsides and reserves. In Tasmania, silverleaf nightshade is a noxious weed that is prohibited from introduction to the State and, if found, must be eradicated.

Weed management

Herbicides

Silverleaf nightshade is a major weed on many continents and over the decades a wide array of herbicides have been screened for efficacy. Research into chemical control dates back to at least 1937, when carbon bisulphide was used as a soil sterilant (Davis et al. 1945). Although there have been instances of success, there are few weeds which have withstood the onslaught of chemical research as well as silverleaf nightshade. Some herbicides will control seedlings and established plants as a spot-spraying treatment, but there are so far no effective and affordable treatments for control of large and dense infestations (Figure 8).

Figure 8. Infestation of *Solanum elaeagnifolium* shoots arising from perennial roots in a pasture in early summer.
In the absence of such a treatment, the general aim should be to contain and suppress large infestations and to eradicate small patches and colonies (Cuthbertson et al. 1976).

The exceptional root development of silverleaf nightshade is the reason that it is so difficult to control with herbicides. Chemical control is made more difficult by the range of crops and environmental factors encountered, including the effect of residual herbicides on following crops. Effective control with herbicides relies on effective translocation without root excretion. In South Africa, herbicides were first tried against silverleaf nightshade, unsuccessfully, in 1952 (Wassermann et al. 1988). Boyd et al. (1984) suggest that silverleaf nightshade has increased in importance in the USA owing to the increased use of soil-applied herbicides. This has reduced competition from annual weeds and reduced the intensity of cultivation, thus favouring silverleaf nightshade growth.

A herbicide that is easily absorbed and very effectively translocated is required to kill the whole root system (Richardson and McKenzie 1981). The three most significant herbicides arising to date are 2,4-D, picloram and glyphosate. McKenzie (1980) observed that herbicide experiments should not be assessed too early because silverleaf nightshade has remarkable abilities to recover, and often emergence in sprayed plots in the following season is merely delayed. Molnar (1982) concluded from the results of 32 field experiments over six years in the Victorian Mallee that 2,4-D ester at 1.2 kg a.i. ha$^{-1}$ was the most effective treatment for short-term suppression of flowering and seed set and that picloram/2,4-D gave the most consistent long-term control.

Picloram. Picloram is most commonly used to treat small infestations of silverleaf nightshade because it remains active in the soil for several years and is moved down the soil profile with wetting fronts. It is often used in a mixture with 2,4-D, which gives rapid control of shoot growth and residual control of regrowth. Spraying shoots and soil for a radius of 2 m was much more effective than treating only shoots (McKenzie 1980). Picloram is not suitable for treating large areas due to cost and the detrimental effect on following broad-leaved crop and pasture species. Molnar (1982) found that picloram at 1.2 kg a.i. ha$^{-1}$ normally gave control for one year. Despite many combinations of rates, timings and sequential picloram applications, at no time was eradication achieved over six years of research. Research in South Africa suggested that picloram/2,4-D was effective and that autumn applications, when translocation was greater, were more effective than summer applications. There was however, a minimum effective rate of picloram (>264 g a.i. ha$^{-1}$) which could not be reduced by substitution with increasing rates of 2,4-D (Wassermann et al. 1988). Roots were excavated 17 months after picloram application and the average depth of root death was 51 cm, with the maximum depth being 165 cm. The least depth of root death was 8 cm. Picloram was detected 60–100 cm deep 10 weeks after application in November and March, respectively, during periods of moderate to low rainfall. In another study it reached a depth of 1 m within four weeks when rainfall was high, but under dry conditions it remained near the soil surface. Heavy cereal stubbles can prevent picloram from entering and leaching through the soil (McKenzie 1980, Molnar 1982). Root studies from one trial in South Africa suggested that roots were killed to 1.2 m depth by some treatments (Wassermann et al. 1988).

Picloram is absorbed by silverleaf nightshade for up to 72 hours, with a maximum of 75% of applied herbicide taken up (Richardson 1979a). The concentration levels in total root biomass fall after 72 hours, while concentration levels rise in aerial growth, suggesting that the herbicide is actively sequestered in leaves. The average concentration level of picloram in the upper 20 cm of the roots was above that required to be toxic, which supports field observations where only the upper portion of root systems is often controlled by picloram applications (Richardson 1979a).

Picloram is absorbed by silverleaf nightshade for up to 72 hours, with a maximum of 75% of applied herbicide taken up (Richardson 1979a). The concentration levels in total root biomass fall after 72 hours, while concentration levels rise in aerial growth, suggesting that the herbicide is actively sequestered in leaves. The average concentration level of picloram in the upper 20 cm of the roots was above that required to be toxic, which supports field observations where only the upper portion of root systems is often controlled by picloram applications (Richardson 1979a).

Root fragments collected from plants sprayed with picloram in the field indicate that the herbicide is transported to a depth of 40 cm in the roots within six hours of application (Richardson 1979b). However, subsequent regrowth of plants was greater when root fragments were obtained after 24 hours or more, suggesting that the herbicide is not effectively retained in the roots for any considerable period of time. Field experiments suggested that picloram/2,4-D was effective but one application of herbicide, even at a very high rate, was not sufficient to eradicate colonies, and that successive
applications of picloram/2,4-D were required to kill the root system. Time of picloram application had little influence on control, except that plants treated in November sometimes regrew in the same season, while those treated in February did not regrow. Cultivation before or after picloram/2,4-D application has little effect on control (McKenzie 1980).

2,4-D. Ester or amine formulations of 2,4-D are used to suppress shoot growth and to reduce flowering and seed set in silverleaf nightshade but there is little evidence that roots are damaged. 2,4-D ester at 1.12 kg a.i. ha$^{-1}$ was effective at preventing seed set and maintaining a clean summer fallow, but two to four applications were needed over the six month growing season (McKenzie 1980). A concentration of 7.5×10^{-8} mmoles mg$^{-1}$ dry weight of 2,4-D in root fragments was sufficient to prevent regeneration (Richardson and McKenzie 1981).

Glyphosate. Glyphosate gives variable control of silverleaf nightshade in Australia, but results in some other countries are good. Efficacy is probably determined by factors such as drought stress, dustiness of leaves and air humidity, and research suggests that growth stage is also important. Timing of herbicide application can be important, with early season application of glyphosate providing the best control of silverleaf nightshade in cotton fields (Choudhary et al. 2006). Spot treatments are used at 3.6–7.2 g a.i. L$^{-1}$. Under dry Mallee conditions, glyphosate was not effective, with regrowth and seed set occurring frequently after treatment (McKenzie 1980). Glyphosate applied as a single or sequential spot treatment at various timings in Texas resulted in 6–98% control, illustrating the variable efficacy of this herbicide (Westerman and Murray 1994). Glyphosate applied at the green berry stage, when there was a strong flow of assimilates to the roots, was most effective (Stubblefield and Sosebee 1985). Eleftherohorinos et al. (1993) reported that glyphosate provided 31–100% control, depending upon location and adjuvants used. Glyphosate applied with a rope-wick applicator in Texas gave over 95% control (Abernathy and Keeling 1979). South African studies suggested that roots were killed to 1.2 m when glyphosate was applied at 2.16 kg a.i. ha$^{-1}$ (Wassermann et al. 1988) and glyphosate at 2.13 kg a.i. ha$^{-1}$ gave greater than 80% control 460 days after treatment in Morocco (Bouhache, Boulet and Mounir 1993).

Other herbicides. Some other herbicides with reported efficacy against silverleaf nightshade include bromacil, clopyralid, ethidimuron, fluoroxypry, hexazinone, imazapyr, karbutilate, tebuthiuron and terbacil (Molnar 1982, Bouhache, Boulet and Mounir 1993, and G.M. Fromm personal communication). Tebuthiuron was applied in South Africa at 2–6 kg a.i. ha$^{-1}$ without complete control (Wassermann et al. 1988) but at one site in Australia, 4 kg a.i. ha$^{-1}$ gave over 99% control six years after application (J. Heap, unpublished data).

Triclopyr has been reported as not providing any commercially acceptable level of control (Eleftherohorinos et al. 1993). Fluoroxypry, either alone or with glyphosate, provides control of silverleaf nightshade in semi-arid conditions of the Northern Negev (Yaacoby 1996). Molnar (1982) reported inadequate control in the Victorian Mallee after one year from applications of clopyralid, dicamba, cyanatryn, triclopyr, dicamba/2,4-D, fosamine, asulam, atrazine, 2,4-DB, terbutryn, isoproturon, metribuzin, 2,4,5-T ester, 2,4-D ester, metoxuron, dichlobenil, glyphosate, bromacil and oxyfluorfen. In Greece, triclopyr gave almost no control (Eleftherohorinos et al. 1993). Amor (1977) reported that in Texas, blade ploughs fitted with herbicide injectors were used to apply sub-surface bands of dinitroanaline herbicides (dinitramine, profluralin and trifluralin) for suppression of silverleaf nightshade. The triazine herbicides atrazine, terbutryn, and propazine were boom sprayed and incorporated to achieve moderate levels of short-term control.

Other treatments

Before the advent of modern herbicides, Davis et al. (1945) conducted crop competition, cultivation, hoing and burning experiments in irrigated crops in Arizona over three years. Weekly, fortnightly and monthly cultivation for three years during the silverleaf nightshade growing
season eradicated the weed. Shade from summer-growing crops, such as cotton, was important to the success of cultivation, but shade alone was ineffective. Oats grown during winter, followed by monthly cultivation eradicated silverleaf nightshade by the end of the third year. Lucerne grown for hay did not reduce silverleaf nightshade when the lucerne was cut at 25 or 50% flower, or when cutting coincided with silverleaf nightshade flowering. Weekly hoeing and burning during the silverleaf nightshade growing season for two years did not give satisfactory control. The successful control methods of Davis et al. (1945) described above were applied very successfully in South Africa. In regions with sufficient rainfall, dense crops also effectively suppressed silverleaf nightshade by shading (Wassermann et al. 1988). Shoot growth, berry production and carbohydrate production were progressively and greatly reduced by 47–92% shading (Boyd and Murray 1981).

Cultivation is reported to be ineffective in Australia because most of the roots are below the depth of cultivation and new plants may arise from transplanted fragments. Under dry conditions, deep cultivation may reduce but not eradicate an infestation (Parsons and Cuthbertson 1992). Silverleaf nightshade recovered rapidly after slashing and flowers developed close to the ground even when plants were slashed every 2–3 weeks. Cultivation every 3–5 weeks was required to obtain acceptable control. This frequency of cultivation is expensive and damaging to soil structure, and there is evidence that shoot density increased as wounded roots produced multiple shoots. The combination of slashing or cultivation and herbicide application did not improve control above the level of 2,4-D or picloram/2,4-D treatments alone (McKenzie 1980).

In contrast, recommendations for silverleaf nightshade control in the Mediterranean region include ploughing during the vegetative growth stage to leave the root sections on the soil surface to desiccate (EPPO 2006). Additionally, the EPPO also recommended that repeated mowing might weaken the plant and prevent seed set.

Reducing tillage during planting can reduce hairy nightshade (Solanum physalifoïdum Rusby) emergence by 77–99% in irrigated vegetable crops (Peachey et al. 2004) and 88–96% in rotations of vegetables and winter wheat (Peachey et al. 2006). The use of a cover crop is less important than the degree of soil disturbance for managing emergence.

Natural enemies

The inability of cultural or chemical methods to control silverleaf nightshade has made it a major candidate for biological control in many countries, including the USA, South Africa and Australia. There have been extensive searches for agents in western and central USA but so far no agents suited to Mediterranean regions have been found. In a survey of the USA, 22 insect species were found on silverleaf nightshade in California, on the extremities of the plant’s range, and 90 species in Texas, part of the probable centre of diversity for the species (Goeden 1971).

It was recognized during the 1970s that there was a case for direct Australian participation in biological control investigations (Moore et al. 1975). Successful agents in Australia will need to be adapted to autumn-sown wheat cultivation under predominantly winter rainfall. The two most important aspects for selection of potential agents are the absence of silverleaf nightshade aerial vegetation from autumn to spring, and regeneration primarily from established rootstocks. Most agents identified in Central America would be severely limited by cultivation associated with wheat production. No agents that attacked roots were detected. It is concluded that the summer drought which occurs in most areas infested in Australia would not be suitable for the agents found in Central America. Similarly, Goeden (1971) concluded that transfer of agents from Central America to regions of California with a Mediterranean climate would be unlikely to succeed. However, some regions in northern New South Wales and southern Queensland which receive reliable summer rainfall may support some promising species (Wapshere 1988).

Wassermann et al. (1988) concluded that unless an extremely effective herbicide became available, biological control should be given serious attention in South Africa. Silverleaf nightshade has virtually no natural enemies in South Africa. A range of eight agents has been evaluated in South Africa since 1972, including a snout beetle from Argentina (Conotrachelus bisignatus (Boh.)), tortoise beetles from Texas and Argentina (Gratiana lutescens pallidula (Boh.) and G. lutescens lutescens (Boh.)) and
a bug from Argentina (*Arvelius albopunctatus* (De Geer)), but most of these have been rejected due to lack of specificity or rearing problems. A fruit-boring gelechiid moth from North Mexico (*Frumenta nephelomicta* Meyrick) was cleared for introduction but failed to establish (Wassermann *et al.* 1988, Olckers and Zimmermann 1991, Olckers 1997). The leaf nematode *Orrina phyllobia* (Thorne) Brzeski, previously referred to as *Nothanguina phyllobia*, which causes leaf and stem damage on infected plants, has also been evaluated as a biocontrol agent (Northam and Orr 1982). Field trials in Texas indicated a 23% reduction in plant biomass and a 42% reduction in stem density after 12 months due to the presence of the nematode. It was also noted that nematode spores inoculation was more effective in April than in August. The nematode provides an effective bioherbicide option only in summer rainfall areas, thus would not be suited to southern Australia (Wapshere 1988).

A stink bug, thought to be *Nezara viridula* (Linnaeus), destroyed up to 95% of seeds on plants in some regions of South Africa (Wassermann *et al.* 1988). Other agents identified by Goeden (1971) and Zimmermann (1974) with potential were *Trichobaris texana* (Le Conte), *Leptinotarsa defecta* (Stal) and *Anthonomus* spp. Neser (1985) also identified the beetle *Leptinotarsa texana* (Schaeffer) as a promising agent. The two defoliating beetles, *Leptinotarsa defecta* and *L. texana*, have been identified as natural pests of silverleaf nightshade, although the species may not be host specific, as turkey berry (*Solanum torvum* Sw.) has been identified as a second host plant for *L. texana* (Cuda *et al.* 2002). These two species have been evaluated as potential biocontrol agents in South Africa, with release occurring in 1992. *L. deficta* has not established viable populations, whereas *L. texana* has flourished and has suppressed silverleaf nightshade populations. Infested populations exhibited significant decreases in biomass and berry production when *L. texana* was present, although the studies did not indicate whether the damage inflicted would reduce the vigour of the root system to the point of preventing regeneration. So far *L. texana* has been successfully established in the Eastern Cape, south-western Cape, Free State, Gauteng, Northern Province and Northwest Province. Establishment has been predominantly in non-crop areas, where plants are not disturbed by herbicide application or cultivation. This is the first time that biological control agents have been successfully released against a member of Solanaceae anywhere in the world (Olckers *et al.* 1996, Olckers 1997).

There have been periodic reports of a range of native agents attacking silverleaf nightshade in Australia. Fruits were frequently attacked by insect larvae in Victoria and New South Wales and one form of a virus was almost universally present, causing small, narrow leaves. A second virus was abundant on one property, causing a proliferation of the inflorescence and virescence of the flowers. Both viruses completely suppressed flowering but vegetative vigour was not obviously affected. One large irregularly-circular bare patch was reported by a farmer to have been caused by root-boring larvae (D.E. Symon unpublished report). On a property near Parkes, New South Wales, plants had apparently been killed by the root-feeding larvae of a native Gelechiid moth, identified by the CSIRO Division of Entomology as *Scrobipalpa leucocephala* Low. (Moore *et al.* 1975). A report of larval feeding on silverleaf nightshade roots was received from near Parilla in South Australia in 1995 and is currently under investigation by the authors. Larvae were found mining in the upper tap roots of perennial silverleaf nightshade plants and in most cases the shoots wilted and senesced. Provisional identification of the larvae suggests that they also belong to the family Gelechiidae. McKenzie (1980) reported that three native moths, one of which feeds on the roots and two on the seeds, have little permanent effect on the weed. In 1978/79, Rutherglen bugs (*Nyssius vinitor* (Bergroth)) and a shield bug caused extensive damage to silverleaf nightshade and other species near Hopetoun, Victoria, but plants soon recovered.

Co-ordinated control

A major government-sponsored eradication program of silverleaf nightshade, based on the use of picloram, began in South Africa in 1968. Picloram is not the ideal herbicide because residual effects can continue for several years. The program, involving subsidies to landowners, lasted until 1972. The campaign was abandoned due to high costs and poor results, although control appeared to be better on shallow soils than on deep, arable soils which allowed deeper root
growth. The program failed because of inadequate knowledge of the weed and herbicide efficacy, as well as poor farmer co-operation. Despite intensive research, no herbicides were specifically registered against silverleaf nightshade and by 1988 recommendations had reverted to using 2,4-D to restrict growth and prevent seed formation (Wassermann et al. 1988). Wassermann et al. (1988) concluded that silverleaf nightshade was impossible to eradicate in any practical way. Smith (1975) mapped the distribution of silverleaf nightshade in South Australia and proposed a control strategy to limit spread. Carter (1992) demonstrated that co-ordinated control programs involving publicity, extension and enforced control reduced the rate of spread of silverleaf nightshade in the Eyre Peninsula region of South Australia. The study highlighted the need to detect new infestations early, and to ensure that they were controlled, rather than concentrating on large, established infestations.

References

Cooley, A.W. and Smith, D.T. (1972). Seed aspects of two perennials – woollyleaf bursage and silverleaf...

Markouk, M., Bekkouche, K., Larhsini, M., Bousaid, M., Lazrek, H.B. and Jana, M. (2000). Evaluation of...

and Bedouin market plant products. *Pharmaceutical Biology* 37, 188-95